Ϫ Anatomia.XMC.pl ✔️ » Układ Pokarmowy - Biologia Blog

WWW.ANATOMIA.XMC.PL

Blog Budowa Organizmu Człowieka Anatomia Organizm Ludzki

Loading...


Loading...

.:: Login ::.

.:: Rejestracja ::.

.:: Przypomnienie ::.

.:: Tematy ::.

.:: Tagi ::.

Żelazo Wpływ Żelaza

Żelazo należy do najlepiej poznanych składników pokarmowych. Postęp badań nad żelazem i jego rolą w prawidłowym funkcjonowaniu ustroju wynika przede wszystkim z powszechnych na całym świecie niedoborów żelaza i związanych z tym zmian chorobowych. Wysiłki naukowców zmierzają do wyjaśnienia wpływu żelaza na organizm człowieka, opisania szczegółowych funkcji metabolicznych tego pierwiastka oraz do opracowania efektywnych, zintegrowanych metod zapobiegania niedoborom. Rozwój badań w dużej mierze możliwy był dzięki temu, iż pomiar zawartości żelaza we krwi, a przede wszystkim w erytrocytach, odzwierciedla stan zaopatrzenia organizmu w ten pierwiastek. Łatwość pozyskania krwi i względnie niskie koszty analiz pozwoliły na szeroko zakrojone prace badawcze.

Żelazo jest po tlenie, krzemie, glinie, czwartym najbardziej rozpowszechnionym pierwiastkiem na kuli ziemskiej. W roztworach wodnych występuje w dwóch stopniach utleniania – jako jon żelazawy (Fe2+) i żelazowy (Fe3+). Szczególną
własnością żelaza jest łatwość przechodzenia z jednego stanu utlenienia w drugi, co pozwala mu na sprawowanie funkcji katalitycznych w reakcjach oksydoredukcyjnych, gdzie działa jako donor lub akceptor elektronów. Duża część biologicznych funkcji żelaza w procesach przemian tlenowych i energetycznych opiera się właśnie na tej jego właściwości.
Poprzez swoją reaktywność i duży potencjał oksydacyjny żelazo może mieć negatywny wpływ na organizm poprzez katalizowanie reakcji tworzenia wolnych rodników Kontrolę nad niekorzystnymi przemianami biochemicznymi ułatwia związanie żelaza z proteinami oraz system enzymów unieczynniających wolne rodniki.

Wchłanianie Żelaza
W rozważaniach nad wchłanianiem żelaza istotne znaczenie ma podział żelaza dostarczanego z dietą na żelazo hemowe występujące głównie w produktach pochodzenia zwierzęcego i niehemowe występujące przede wszystkim w produktach roślinnych.W produktach żywnościowych ponad 80 % żelaza występuje w formie niehemowej (w postaci soli żelazawych). Wchłanianie żelaza niehemowego zależy w znacznym stopniu od kompozycji przyjmowanej diety. Zwiększeniu bioprzyswajalności służy wzbogacenie diety m.in, w witaminę C oraz spożywanie produktów pochodzenia roślinnego łącznie z mięsem i rybami. Dobremu wchłanianiu żelaza niehemowego nie służy dieta bogata w mleko, sery, jajka, kawę oraz herbatę. Żelazo hemowe pochodzi z hemoglobiny i mioglobiny mięsa oraz ryb. Mimo, że stanowi tylko ok. 20% żelaza zawartego w diecie, to organizm wchłania go znacznie więcej niż żelaza niehemowego i wchłanianie to jest mniej uzależnione od innych składników pożywienia. Żelazo wchłaniane jest w jelicie cienkim (dwunastnica i początkowy odcinek jelita czczego), po uprzednim zjonizowaniu pod wpływem kwasu solnego pochodzącego z soku żołądkowego. Żelazo przechodzi przez nabłonek jelitowy jako dwuwartościowe i utlenia się do trójwartościowego. W komórkach nabłonka jelitowego łączy się z białkiem zwanym apoferrytyną tworząc ferrytynę. Żelazo przechodząc z komórek nabłonka do krwi łączy się z transferyną – białkiem transportującym żelazo do szpiku kostnego, gdzie jest wykorzystywane w procesie erytropozy (tworzenia krwinek czerwonych). Poza funkcją transportową transferyna pełni także funkcję magazynową.W porównaniu z osobami zdrowymi, posiadającymi zrównoważone zapasy żelaza, bioprzyswajalność żelaza rośnie nawet dziesięciokrotnie u osób wykazujących niedobory tego pierwiastka. Jest to swoisty mechanizm organizmu regulujący gospodarkę żelazem.
Ogólnie można przyjąć, że zależnie od czynników modulujących bioprzyswajalność, wchłanianie żelaza waha się od 5 do ok. 25%. Należy to uwzględnić podając dzienne spożycie żelaza, które wynosi od kilku do 60 mg na dobę. Dla lepszego zrozumienia zagadnień związanych gospodarką żelazem należy wprowadzić pojęcie tzw. gęstości żelaza, czyli jego ilości w mg na 1000 kcal, która powinna wynosić 5-6 mgO niedoborach żelaza wynikających z nieprawidłowego żywienia mówi się zazwyczaj w przypadku podaży żelaza nie wystąrczającej dla zaopatrzenia organizmu w pulę żelaza funkcjonalnego. Do niedoborów tych dochodzi po wyczerpaniu zapasów magazynowych żelaza. Na poziomie komórkowym niedobór żelaza może być także skutkiem nieprawidłowego uwalniania pierwiastka z puli zapasowej, pomimo prawidłowego dostarczania go z pokarmem i odpowiedniego stanu ilościowego magazynów.

Niedokrwistość z Niedoboru Żelaza
Według definicji określonej przez Światową Organizację Zdrowia (WHO) o niedokrwistości mówimy wtedy, gdy poziom hemoglobiny w krwinkach czerwonych spada: u mężczyzn poniżej 130 g/1 (13 g%), u kobiet – 120 g/1 (12 g%), u kobiet w ciąży – 110 g/1 (11 g%), u dzieci w wieku od 6 do 14 lat – 120 g/1 (12 g%) a u dzieci w wieku 6 miesięcy do 6 lat – poniżej 110 g/1 (11 g%). Definicja ta jest bardzo szeroka i daje tylko ogólny pogląd na problem niedokrwistości. Należy pamiętać, że wśród wielu stanów chorobowych objawiających się niedokrwistością, tylko część spowodowana jest niedoborami żelaza. Niedokrwistość na tle niedoborów żywieniowych może powstawać przede wszystkim z powodu niedostatecznej ilości żelaza i kwasu foliowego. Niedobory innych składników pokarmowych, takich jak białka, witaminy B2, B6, B12, C, E oraz miedzi i kobaltu, mogą sprzyjać jej powstawaniu, lecz wykazują mniejszy wpływ, gdyż występują rzadziej. Do innych typów niedokrwistości należą m.in. niedokrwistości o podłożu immunologicznym oraz niedokrwistości w przebiegu chorób przewlekłych.
Cechą charakterystyczną niedokrwistości z niedoboru żelaza, poza zmniejszeniem ogólnej ilości hemoglobiny jest:
– spadek MCHC – średniego stężenia hemoglobiny w erytrocytach
– spadek MCH – średniej zawartości hemoglobiny w erytrocytach
– zmniejszenie MCV – średniej objętości erytrocytów
– ogólna tendencja do mikro i anizocytozy (zmniejszenia i nieregularności kształtów erytrorytów)
– zmniejszony poziom ferrytyny w osoczu
– zwiększony poziom całkowitej zdolności wiązania żelaza

Przyczyny Niedokrwistości

1. Dietetyczne
– niezbilansowana dieta
– nadmiar substancji utrudniających wchłanianie żelaza w przewodzie pokarmowym
2. Utrata krwi spowodowana przez:
– obfite krwawienia miesięczne
– inne niż miesiączkowe krwawienia z dróg rodnych
– krwawienia z przewodu pokarmowego
– inne krwawienia
3. Nadmierny rozpad krwinek czerwonych
4. Niedostateczne wytwarzanie krwinek czerwonych, zaburzenia syntezy hemoglobiny
S. Choroby przewodu pokarmowego utrudniające wchłanianie żelaza i innych substancji krwiotwórczych
6. Zakażenia pasożytnicze przewodu pokarmowego
7. Stany zapalne i infekcje
8. Nowotwory

Przy niedokrwistości upośledzona jest zdolność krwi do zaopatrywania tkanek w tlen niezbędny do wytwarzania energii. Niedotlenienie tkanek wywołuje zaburzenia układu nerwowego, niemożność skupienia uwagi, łatwe męczenie się podczas pracy fizycznej i umysłowej, rozdrażnienie, upośledzenie pamięci i zmniejszenie zdolności ustroju do utrzymania właściwej temperatury. Aby dostarczyć tkankom dostateczną ilość tlenu serce wykonuje wzmożoną pracę, co może doprowadzić do napadów bólów wieńcowych oraz do powstania niewydolności krążenia. W miarę pogłębiania się niedokrwistości objawy przybierają na sile.

Na niedokrwistość z niedoboru żelaza najbardziej narażone są kobiety (średnio dwa razy częściej niż mężczyźni). Wiąże się to z utratą żelaza podczas miesiączek. Stopnie zmniejszonej zawartości żelaza w organizmie. Rozróżnia się 3 stopnie zmniejszonej zawartości żelaza w organizmie:
:: pierwszy – zmniejszenie zapasów żelaza w ustroju (obniżenie stężenia ferrytyny w surowicy krwi) bez zaburzeń czynności fizjologicznych ustroju, świadczący tylko o podatności organizmu na niedobory żelaza. Ryzyko rozwoju niedokrwistości jest minimalne, ponieważ organizm może zwiększyć wchłanianie żelaza w miarę zmniejszania się jego zapasów;
:: drugi – ilość żelaza w ustroju jest niewystarczająca do syntezy hemoglobiny i innych substancji zawierających żelazo (stopień wysycenia transferyny żelazem obniża się i wzrasta stężenie protoporfiryny w erytrocytach). Ze względu na to, że stężenie hemoglobiny nie spada poniżej normy, etap ten określany jest jako niedobór żelaza bez występowania niedokrwistości;
:: trzeci – jawna niedokrwistość na tle niedoborów żelaza (stężenie hemoglobiny spada poniżej norm dla danego wieku i płci).

Czytaj Więcej »

Kategoria : Układ Pokarmowy | Comment (0)

Tagi : , , , ,

Proteiny Białko

Angielska nazwa białek – proteins, pochodzi od greckiego słowa – protos, co oznacza „pierwszy”. Nazwa trafnie oddaje znaczenie białek, gdyż ze wszystkich związków chemicznych one właśnie zajmują pierwsze miejsce, pod względem różnorodności funkcji, jakie spełniają w przyrodzie. Są „substancją życia”, gdyż stanowią znaczną część organizmów, utrzymują jego kształt i zapewniają funkcjonowanie. Obecność białek stwierdzono we wszystkich komórkach żywych, a także u wirusów jako istotny składnik ich „organizmu”. Białka są głównym elementem budulcowym skóry, mięśni, ścięgien, nerwów, krwi, mleka, chrząstek, sierści, paznokci, piór, kopy, a ponadto niezliczonej ilości enzymów, receptorów, przeciwciał, antybiotyków, toksyn bakteryjnych, jadu węży i wielu hormonów. Białka są syntetyzowane na podstawie DNA, ich budowa oraz związana z nią struktura jest uwarunkowana kolejnością zasad azotowych w łańcuchu cząs-teczki kwasu nukleinowego. Białka, podobnie jak kwasy nukleinowe są wielkocząsteczkowymi polimerami, złożonymi z liniowo połączonych cząsteczek aminokwasów. Liczba kombinacji 20 rodzajów aminokwasów (występujących w przyrodzie), dla przeciętnego białka jest praktycznie nieskończona. Do utworzenia i utrzymania przy życiu organizmu jest potrzebne wiele dziesiątków tysięcy różnych białek.

Białka są najważniejszym budulcem organizmu. Należą do związków organicznych o najbardziej skomplikowanej budowie. W cząsteczkach swoich zawierają takie pierwiastki jak: wodór, węgiel, tlen, azot, siarka, fosfor, żelazo, chlor i śladowe ilości innych pierwiastków. Stwierdzono, że związki te są zbudowane z licznych aminokwasów.  Białka należą do najważniejszych związków organicznych, potrzebnych żywemu organizmowi.  Można je znaleźć w niemal każdej części organizmu zwierząt, roślin, a nawet wirusów. Jest ono podstawą życia biologicznego.  Białka powstają w wyniku polikondensacji, czyli polimeryzacji z wydzielaniem związków małocząsteczkowych a-L-aminokwasów. Reakcja ta zachodzi przy udziale wyspecjalizowanych kompleksów enzymatycznych – rybosomów, we wszystkich komórkach organizmów żywych i jest określana mianem translacji.

Aminokwasy są podstawowymi elementami białek. Składają się z: grupy aminowej, grupy karboksylowej, atomu wodoru oraz specyficznej dla każdego aminokwasu łańcucha bocznego. Wszystkie te elementy skupione są wokół węgla a.
Centralny węgiel połączony jest z czterema różnymi podstawnikami, co powoduje, że jest on asymetryczny. Związane jest to z dwoma możliwymi ułożeniami grup otaczających węgiel.  Te dwie formy nazywa się izomerami optycznymi. W przestrzeni trójwymiarowej nie jest możliwa zamiana ich w siebie bez zniszczenia struktury. Są one wzajemnymi odbiciami lustrzanymi, przy czym wszystkie aminokwasy w naturze występują w formie L. W roztworze obojętnym aminokwasy występują w formie jonów obojnaczych, czyli grupa aminowa (NH3) posiada ładunek dodatni (NH3+), a grupa karboksylowa (COOH) – ujemny (COOH-). Gdy pH otoczenia ulegnie zmianie, zmienia się też stan jonizacji cząsteczki aminokwasu. Wraz ze zmnie-jszeniem stężenia jonów wodoru (wzrostem pH) zaczyna przeważać forma o nie zjonizowanej grupie NH3. Gdy wzrasta stężenie jonów wodoru (spadek pH), grupa aminowa ulega jonizacji podczas, gdy grupa karboksylowa przyjmuje formę COOH.  W białkach występuje zestaw 20 podstawowych aminokwasów. Ten zestaw jest jednolity dla całego świata ożywionego.  Aminokwasy różnią się jedynie łańcuchami bocznymi – reszta elementów pozostaje niezmieniona. Grupy boczne różnić się mogą:

:: kształtem,
:: wielkością,
:: ładunkiem elektrycznym,
:: reaktywnością,
:: zdolnością do tworzenia wiązań wodorowych i hydrofobowych.

Biorąc pod uwagę właściwości grupy bocznej, aminokwasy można podzielić na: hydrofobowe i hydrofilowe, a w obrębie tej grupy dodatkowo na kwasowe, zasadowe i nienaładowane.  Na podstawie kodu genetycznego są syntetyzowane polipeptydy o ściśle określonej sekwencji aminokwasów. W zależności od liczby aminokwasów, można wyróżnić dipeptydy, tripeptydy, itd. Dla peptydów utworzonych z kilku do kilkunastu aminokwasów stosuje się ogólną nazwę – oligopeptydy, natomiast dla cząsteczek zbudowanych z kilkudziesięciu (do ok. 100) aminokwasów – polipeptydy. Białka to związki wielkocząsteczkowe (makromolekularne), których pojedyncze łańcuchy polipeptydowe mogą dochodzić do ponad 1000 cząsteczek aminokwasów. Rodzaj i wzajemne powiązania aminokwasów wchodzących w skład łańcucha polipeptydowego, decydują o charakterze, funkcji i właściwościach fizyko-chemicznych cząsteczki. Helisa, podobnie jak każda śruba może być zarówno prawo, jak i lewoskrętna. W białkach wys-tępuje głównie struktura helisy prawoskrętnej.

Właściwości białek
1. Rozpuszczalność: Rozpuszczalność białek w roztworach jest uzależniona od wzajemnego stosunku aminokwasów hydrofobowych i hydrofilowych. Do nierozpuszczalnych w wodzie należą skleroproteiny tkanki łącznej (rogi, paznokcie, włosy) oraz białka wchodzące w skład błon lipidowych (receptory błonowe). Przykładem rozpuszczalnych w wodzie, są białka osocza krwi (globuliny). Wskutek dużych rozmiarów cząsteczek, ich wodne roztwory wykazują typowe właściwości roztworów kolidalnych. O rozpuszczalności decyduje przede wszystkim zdolność do hydratacji. Białko w stanie stałym zmieszane z małą ilością wody tworzy galaretowaty żel. W miarę dodawania rozpuszczalnika białka rozpuszczają się bardziej i powstaje zol. Charakteryzuje się on wysoką lepkością, obniżonym napięciem powierzchniowym, rozpraszaniem światła, tzw. efekt Tyndalla, aktywnością koloidoosmotyczną oraz podatnością na koagulację czyli zmianę żelazo pod wpływem różnych czynników. Czynnikiem poprawiającym rozpuszczalność większości białek są niskie stężenia soli, natomiast pod wpływem wysokich stężeń soli, niektórych kwasów, soli metali ciężkich, rozpuszczalników organicznych, a także wysokiej temperatury (>50oC) następuje ich wytrącenie z roztworu.
2. Białka wykazują właściwości kwasowo-zasadowe, gdyż ich składniki – aminokwasy posiadają grupy funkcyjne zdolne do jonizacji. Przy pewnej charakterystycznej dla każdego białka wartości pH, nazywanej punktem izoelektrycznym, cząsteczki mają zerowy ładunek. Przy tej wartości rozpuszczalność większości białek osiąga minimum. Przy wartościach pH, różnych od punktu izoelektrycznego, proteiny występują w roztworze w postaci makrojonów, przez co mogą poruszać się w polu elektrycznym. Białka ulegają specyficznym rekcjom uwarunkowanym obecnością różnych grup funkcyjnych aminokwasów.

Poważnym problemem w gospodarce białkowej człowieka jest alkoholizm. Alkohol przenika do płynów i soków tkankowych człowieka. Nie ulegając trawieniu dostaje się do krwi przez błonę śluzową żołądka i jelit. Wraz z krwią jest roznoszony po całym organizmie, do wszystkich jego tkanek. Alkohol, tak jak i wysoka temperatura powoduje ścinanie białek. Destrukcyjne działanie alkoholu dotyka wszystkich układów. Zmniejsza siłę obronną organizmu przy wszelkich stanach zapalnych i gorączce oraz obniża sprawność fizyczną i umysłową. Wpływa hamująco na rozwój młodego organizmu i degeneruje go.
Czytaj Więcej »

Kategoria : Układ Pokarmowy | Comment (1)

Tagi : , , ,

Jelita i Wyrostek

Jelito, stanowi najdłuższy odcinek przewodu pokarmowego u kręgowców rozpoczynający się za żołądkiem a kończący się odbytnicą lub stekiem. U większości bezkręgowców jelitem nazywa się cały przewód pokarmowy. Ściana jelita zbudowana jest z  błony śluzowej, błony mięśniowej (tkanka mięśniowa) i  otrzewnej. U ssaków więc, też u człowieka wyróżniamy jelito cienkie i grube.

Jelito cienkie, ma długość 5-6 m, składa się z dwunastnicy, jelita czczego czyli próżnego i jelita krętego czyli biodrowego. Jelito cienkie charakteryzuje się obecnością w błonie śluzowej fałdów okrężnych i na nich osadzonych kosmków jelitowych, które w bardzo dużym stopniu zwiększają powierzchnię resorpcyjną (wchłaniania). W jelicie cienkim odbywa się końcowy rozkład pokarmów (trawienie), cukrów do glukozy względnie fruktozy, tłuszczów do kwasów tłuszczowych: glicerolu, białek do aminokwasów. Z tego jelita resorbowane są do krwi cukry proste i aminokwasy, a do limfy(chłonki) kwasy tłuszczowe (enzymy trawienne).

Jelito grube, składa się z części rozpoczynającej się ślepo poniżej ujścia jelita cienkiego, zwanej jelitem ślepym, od którego odchodzi, zwisając do miednicy małej, wyrostek robaczkowy. Idąc w górę od prawego talerza biodrowego jelito ślepe przechodzi w dalszą część jelita grubego, czyli okrężnicę. Wyróżniamy trzy części okrężnicy. Pierwsza jest nazwana okrężnicą wstępującą, która następnie pod prawym łukiem żebrowym zgięciem prawym (wątrobowym) przechodzi w okrężnicę poprzeczną. Ta część jelita grubego jest zrośnięta z siecią większą żołądka. W lewym podżebrzu w sąsiedztwie śledziony okrężnica poprzeczna lewym zgięciem przechodzi w okrężnicę zstępującą, kierującą się ku dołowi i na lewym talerzu biodrowym przechodzi w esicę, która po przejściu do miednicy kończy się odbytnicą (prostnicą). Odbytnica jest zakończona otworem – odbytem zaopatrzonym w zwieracz. Odbyt jest końcowym otworem przewodu pokarmowego. Morfologicznie jelito grube cechuje obecność wypukleń, trzech taśm i przyczepków sieciowych. W jelicie grubym następuje resorpcja wody i innych składników, przez co treść ulega znacznemu zagęszczeniu. Ponadto odbywają się tutaj procesy fermentacyjne. Zagęszczona treść jelita tworzy kał, który jest wydalany przez odbyt w czasie defekacji.

Jelito olbrzymie, nie jest jednolitą jednostką chorobową, lecz zmianą chorobową, której przyczyny mogą być rozmaite. Rozróżniamy 3 postacie jelita olbrzymiego:

1) jelito olbrzymie wrodzone – choroba Hirschsprunga, jest to wada rozwojowa polegająca na braku lub mniejszej liczbie komórek zwojowych w ścianie jelita grubego, która ulega w tym miejscu obkurczeniu, głównie w odcinku esiczo-odbytniczym. Powyżej tego odcinka występuje znaczne rozszerzenie jelita grubego. Choroba objawia się uporczywym, przewlekłym zaparciem i powiększeniem brzucha, wymiotami, wychudzeniem, niedokrwistością, dystrofią. Objawy występują już w pierwszych dniach życia noworodka. Leczenie operacyjne.
2) postać samoistną, idiomatyczną.
3) postać objawową. Te dwie ostatnie postacie spotykane są w wieku dorosłym i starszym. W rozszerzonym jelicie gromadzą się twarde masy kałowe, które wywołują stany zapalne i zatrucie ustroju. Leczenie operacyjne.

.:: Wyrostek robaczkowy ::.

 Wyrostek

Wyrostek robaczkowy, część układu pokarmowego o długości ok. 8 cm, grubości ok. 6-8 mm, odchodząca od jelita ślepego w dół do miednicy. Występuje u człowieka i niektórych ssaków. Leży w prawej, dolnej części jamy brzusznej. W ścianie wyrostka robaczkowego znajduje się duże skupisko grudek chłonnych.

Czytaj Więcej »

Kategoria : Układ Pokarmowy | Comment (0)

Tagi : , , ,

Układ Trawienny

Zespół narządów służących do przyjmowania pokarmów, rozkładania większych substancji pokarmowych na mniejsze za pomocą enzymów trawiennych a następnie wchłaniania ich do krwi. Wyraźny przewód pokarmowy wraz z otworem gębowym i odbytowym występuje już u  pierścienic. Układ trawienny wszystkich kręgowców jest zbudowany wg. jednego planu – ma postać długiej, umięśnionej rury – a u wszystkich zwierząt chemiczne przemiany związane z trawieniem oraz enzymy biorące udział w tych procesach wykazują duże podobieństwo. Przewód pokarmowy rozpoczyna się jamą gębową (u człowieka tzw. jama ustna), w której pokarm ulega rozdrobnieniu i zostaje zapoczątkowane trawienie, następnie pokarm zmieszany ze śliną dostaje się gardzielą (gardło) i  przełykiem do żołądka, gdzie zachodzą właściwe procesy trawienne. Następnym odcinkiem przewodu pokarmowego jest jelito cienkie (dzielące się na dwunastnicę, jelito czcze i kręte), do którego uchodzą enzymy trzustki i  żółć produkowana przez wątrobę – tutaj pokarm zostaje rozłożony do składników prostych wchłanianych przez kosmki jelitowe. Natomiast niestrawione resztki pokarmowe dostają się do jelita grubego (dzielącego się na jelito ślepe, okrężnicę i odbytnicę), w którym zachodzi wchłanianie wody i formowanie kału. Transport treści pokarmowej w przewodzie pokarmowym zachodzi dzięki pracy jego mięśni (perystaltyka). U poszczególnych zwierząt przewód pokarmowy jest dostosowany do pokarmu, którym się żywią – u zwierząt mięsożernych, których pożywienie składa się z pokarmów łatwo przyswajalnych przewód pokarmowy jest krótki, natomiast u zwierząt roślinożernych o wiele dłuższy ze względu na pobieranie pokarmu mało treściwego, zawierającego dużą ilość błonnika (celuloza).

.:: Narządy jamy brzusznej ::.

Wątroba

Przełyk, część przewodu pokarmowego łącząca gardło z żołądkiem, przechodząca z szyi przez śródpiersie klatki piersiowej do jamy brzusznej.

Czytaj Więcej »

Kategoria : Układ Pokarmowy | Comment (0)

Tagi : , ,